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Genome-wide association studies (GWASs) have identified at least
10 single-nucleotide polymorphisms (SNPs) associated with papil-
lary thyroid cancer (PTC) risk. Most of these SNPs are common
variants with small to moderate effect sizes. Here we assessed
the combined genetic effects of these variants on PTC risk by using
summarized GWAS results to build polygenic risk score (PRS) mod-
els in three PTC study groups from Ohio (1,544 patients and 1,593
controls), Iceland (723 patients and 129,556 controls), and the
United Kingdom (534 patients and 407,945 controls). A PRS based
on the 10 established PTC SNPs showed a stronger predictive
power compared with the clinical factors model, with a minimum
increase of area under the receiver-operating curve of 5.4 percent-
age points (P ≤ 1.0 × 10−9). Adding an extended PRS based on
592,475 common variants did not significantly improve the predic-
tion power compared with the 10-SNP model, suggesting that most
of the remaining undiscovered genetic risk in thyroid cancer is due to
rare, moderate- to high-penetrance variants rather than to common
low-penetrance variants. Based on the 10-SNP PRS, individuals in the
top decile group of PRSs have a close to sevenfold greater risk (95%
CI, 5.4–8.8) compared with the bottom decile group. In conclusion,
PRSs based on a small number of common germline variants empha-
size the importance of heritable low-penetrance markers in PTC.
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Recent advances in genetic and genomic research have led to
the development of efficient methods to detect and evaluate

diagnostic and prognostic factors in individual patients. In nu-
merous monogenic and congenital disorders, diagnoses can be
made based on the occurrence of germline variants. In contrast,
polygenic and acquired disorders can be assessed by the study of
somatic mutations in the appropriate cell or tissue. Typically, this
applies to many cancers for which the study of genetic mutations
in the tumor itself can be diagnostic, prognostic, or informative
for choice of therapy (1–3). The present study investigates
methods for thyroid cancer risk assessment at the germline level.
Thyroid cancer is the ninth most common type of cancer in the

world, with an annual incidence of >500,000 cases (>50,000 oc-
curring in the United States) (4, 5). Although surgery and other
therapies solve most cases, morbidity among patients is high, and
in some cases the tumors exhibit more aggressive behavior. Thy-
roid cancer can be categorized by histology. The medullary type,

which accounts for ∼5% of all cases, arises from parafollicular C
cells of the thyroid. The remaining 95% of all thyroid cancer cases
are of the nonmedullary type and arise in cells of follicular origin.
There are three major histological forms of nonmedullary thyroid
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Thyroid cancer shows a high degree of heritability compared
with other cancers. Genome-wide association studies (GWASs)
have identified at least 10 single-nucleotide polymorphisms
(SNPs) associated with papillary thyroid cancer risk. How these
risk factors might help individualize the assessment of thyroid
cancer risk clinically has been unexplored.We present a polygenic
risk score (PRS) analysis with consistent results in three large
cohorts (United States, Iceland, and United Kingdom). The 10
GWAS SNPs have additive effects on cancer predisposition, and
the 10-SNP PRS has equally strong risk predictive power as a PRS
with >500,000 common variants. Our work demonstrates that
the 10 low-penetrance variants have the potential to be applied
in medicine to improve individualized cancer risk assessment.
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cancer: papillary (PTC), follicular (FTC), and anaplastic (ATC).
PTC alone accounts for ∼85% of all thyroid cancers.
The concept of this study has already been used in numerous

investigations dealing with risk assessment in cancers (4–8). Here
we address an aspect of this field that has not yet been fully
examined: the phenotypic effect of low-penetrance mutations and

their use in individualized thyroid cancer risk assessment. PTC
mutations with high penetrance have been found but account for a
very minor part of all PTCs. We and others have suggested that
common alleles, each conferring a slightly increased risk, may ac-
count for many PTCs and provide an explanation for the high
heritability of PTC (9–11). Indeed, many common, low-penetrance

Table 1. Demographic characteristics of the Ohio, Iceland, and UKB study groups

Characteristic Patients Controls

Ohio
Total 1,544 1,593
Gender, n (%)

Male 395 (26) 423 (27)
Female 1,149 (74) 1,170 (73)

Age, y, mean ± SD 42.9 ± 15.1 45.2 ± 14.0
Year of birth, median (range) 1962 (1913 to 2001) 1963 (1918 to 1991)
First- or second-degree relative diagnosed with thyroid
cancer, n (%)
Yes 135 (8.7) 9 (0.6)
No 1,409 (91.3) 1,584 (99.4)

Iceland
Total 723 129,556
Gender, n (%)

Male 183 (25.3) 60,282 (46.5)
Female 540 (74.7) 69,274 (53.5)

Age, y, mean ± SD 49.3 ± 17.3 60.4 ± 18.0
Year of birth, median (range) 1946 (1911 to 1989) 1956 (1890 to 1990)
First- or second-degree relative diagnosed with thyroid
cancer, n (%)
Yes 84 (11.6) 6,455 (5.0)
No 639 (88.4) 123,101 (95.0)

UKB
Total 534 407,945
Gender, n (%)

Male 131 (24.5) 187,661 (46.0)
Female 403 (75.5) 220,818 (54.0)

Age, y, mean SD 51.8 ± 12.18 64.1 ± 8.00
Year of birth, median (range) 1949 (1938 to 1969) 1950 (1934 to 1969)
First- or second-degree relative diagnosed with thyroid
cancer, n (%)*
Yes NA NA
No NA NA

NA, not applicable.
*No information about family history of thyroid cancer is available for the UKB samples.

Table 2. Effect estimates used in the PRS model in each study group

Marker Locus Position (bp)* OA EA

Ohio Iceland UKB

EAF OR† EAF OR‡ EAF OR§

rs12129938 1q42.2 233,276,815 G A 0.81 1.2 0.783 1.16 0.775 1.32
rs11693806 2q35 217,427,435 G C 0.318 1.43 0.285 1.37 0.279 1.43
rs6793295 3q26.2 169,800,667 C T 0.755 1.2 0.78 1.16 0.729 1.23
rs73227498 5q22.1 112,150,207 T A 0.891 1.28 0.855 1.33 0.863 1.37
rs2466076 8p12 32,575,278 T G 0.528 1.32 0.467 1.3 0.452 1.32
rs1588635 9q22.33 97,775,520 C A 0.476 1.64 0.356 1.72 0.326 1.69
rs7902587 10q24.33 103,934,543 C T 0.12 1.25 0.095 1.22 0.098 1.41
rs368187 14q13.3 36,063,370 C G 0.626 1.33 0.523 1.28 0.55 1.39
rs116909374 14q13.3 36,269,155 C T 0.044 1.71 0.049 1.73 0.038 1.71
rs2289261 15q22.33 67,165,147 G C 0.7 1.14 0.669 1.22 0.647 1.23

*Chromosomal position with reference to build 38, the effect allele (EA) and the other allele (OA), the effect allele frequency (EAF) in controls for each study
group, and the OR used to calculate the polygenic risk score for each study group.
†OR from the meta analysis after excluding results for the Ohio study group.
‡OR from the meta analysis after excluding results for the Icelandic study group.
§OR from the meta analysis after excluding results for the UKB study group.
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SNPs have been found to convey PTC risk (12–21). In this study, we
analyzed the combined genetic effects of 10 well-established thyroid
cancer risk SNPs by constructing and evaluating their polygenic risk
scores (PRSs). We also checked for any residual predictive power
in the remaining genome by generating a genome-wide PRS using
592,495 tagging SNPs and adding it to the 10-SNP PRS, along with
considering conventional clinical factors (CFs).

Results
Study Participants and Their Demographic Characteristics. The re-
sults reported here are based on previously published genome-wide

association studies (GWASs) of thyroid cancer in populations
from Columbus, Ohio and Houston, Texas; Iceland; The
Netherlands; and Spain (16). In addition, we incorporated thyroid
cancer GWAS data generated using genotypic information from
the UK Biobank (UKB) (22, 23). The addition of UKB data to the
meta-analysis of thyroid cancer did not reveal any new significantly
associated genome-wide risk variants.
PRSs were calculated for the three largest sample sets fromOhio,

Iceland, and the United Kingdom with chip genotyped data. The
Ohio study group comprised 1,544 thyroid cancer samples and 1,593
controls; the Iceland group, 723 thyroid cancer samples and 129,556

Fig. 1. ROC curves assessing the discriminative power of the PRS models for the Ohio (A), Iceland (B), and UKB (C ) study groups. The CF model
includes year of birth, gender, ancestry, and familiality for all groups except the UKB group, for which no information was available about family history
of thyroid cancer.

Liyanarachchi et al. PNAS | March 17, 2020 | vol. 117 | no. 11 | 5999
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controls; and the UKB group, 534 thyroid cancer cases and 407,945
controls (Table 1).

PRS Analysis in Study Groups from Ohio, Iceland, and the United
Kingdom and Association with Cancer Risk. The effect estimates
included in the PRS analysis are based on the meta-analysis of
thyroid cancer including all three aforementioned study
groups. In short, we generated PRSs for the Ohio study group
by using effect estimates after excluding all samples from the
United States from our thyroid cancer GWAS meta-analysis,
thereby omitting any potential confounding effects. Similarly,
when generating PRS for Icelandic and British individuals, corre-
sponding samples from those study groups were excluded from the
meta-analysis (Table 2).
For each individual belonging to the Ohio, Icelandic, and

UKB study group, a PRS was generated using the published 10
GWAS thyroid cancer risk SNPs (10-SNP PRS; Table 2) as well
as 592,475 common SNPs with minor allele frequency >1%
(592K-SNP PRS). The PRS for the 592,475 common SNPs was
estimated based on the LDpred method, adjusting for GWAS
summary statistics for the effects of linkage disequilibrium (24).
The risk loci, risk allele frequencies, and effect estimates of the
10 GWAS SNPs included in the 10-SNP PRS are provided in
Table 2. The PRSs of the 10-SNPs and the 592K-SNPs were
approximately normally distributed among thyroid cases and
controls (SI Appendix, Fig. S1) and were significantly different
between thyroid cancer cases and controls in all three study
groups (P = 2.9 × 10−58, P = 3.3 × 10−48 for Ohio; P = 1.3 × 10−48,
P = 4.7 × 10−33 for Iceland; and P = 1.3 × 10−25, P = 2.2 × 10−23

for UKB for the 10-SNP PRS and the 592K-SNP PRS,
respectively).

PRSs in Prediction Models. To investigate the predictive ability of
PRSs, we evaluated prediction models using receiver operating
characteristic (ROC) curves. With CFs, including year of birth,
gender, the 10 first principal components, and familiality (not
available for the UKB samples), we obtained an area under the
ROC curve (AUC) of 0.585 (95% CI, 0.565 to 0.605) for the
Ohio study group, 0.697 (95% CI, 0.680 to 0.714) for the Iceland
group, and 0.629 (95% CI, 0.606 to 0.651) for the UKB group
(Fig. 1 and Table 3). By adding the10-SNP PRS to the model
with CF, we obtained a significantly increased AUC of 0.692 (P =
3.1 × 10−21) for the Ohio group, 0.751 (P = 3.0 × 10−14) for the
Iceland group, and 0.694 (P = 1.0 × 10−09) for the UKB group
(Fig. 1 and Table 3).
We further evaluated the prediction ability after adding the

592K-SNP PRS to the model with 10-SNP PRS and CF (SI
Appendix, Table S2 for results for individual covariates). For the

Ohio and the Icelandic samples, AUCs of 0.693 and 0.752, re-
spectively, were obtained, showing only a 0.1-percentage point
increase over the 10-SNP PRS model (P = 0.34 and 0.31, re-
spectively) (Fig. 1 A and B and Table 3). In the UKB samples, an
AUC of 0.697 was obtained, for a nonsignificant 0.3-percentage
point increase (P = 0.27) (Fig. 1C and Table 3). Together, these
results demonstrate that no significant improvement was
achieved by adding the genome-wide PRS (592K-SNP PRS) to
the model.
In a multicollinearity analysis, we found variance inflation

factors (VIFs) of 2.32 and 2.32 for the Ohio group and 2.04 and
2.04 for the UKB group for the 10-SNP and 592K-SNP PRS
scores, respectively, included in the all-predictive factors com-
bined model. The VIF in the Icelandic study group was somewhat
smaller 1.64 and 1.63 for the 10-SNP and 592K-SNP PRS scores,
respectively. The VIF indicates how much larger the variance is
compared to what it would be if the respective variables included
in the model were not correlated with each other. Moreover, we
estimated that the 10 SNPs under study explained ∼8% of the
familial risk of thyroid cancer in the Ohio study group.

Assessing Thyroid Cancer Risk by 10-SNP PRS Percentile Group Based
on the Meta-Analysis Results from Ohio, Iceland, and the United
Kingdom. We meta-analyzed results from Ohio, Iceland, and the
UK after ranking 10-SNP PRS scores for each individual and
correlating them with cancer status. Individuals in the top decile
group of the PRSs had a 6.9-fold greater risk compared with the
bottom decile group (P = 5.1 × 10−54) (Fig. 2). This difference is
substantial and might be useful in clinical counseling.

Discussion
Our findings largely confirm a previous estimate that 11% of the
genetic predisposition to PTC could be accounted for by the
interaction of five common SNPs (4). In our present study in-
volving 10 SNPs and larger numbers of cases, the proportion was
slightly smaller (8%); this can probably be explained by a some-
what different sample set and higher genetic resolution applied in
the present study. Nevertheless, the fraction of predisposition
accounted for is quite low even when ∼592,000 common SNPs
were investigated.
Interestingly, our data indicate that the 10-SNP PRS in the

prediction model of thyroid cancer performs equally well as the
combined model with 10-SNP PRS and common 592K-SNP PRS

Table 3. Classification results for different models in each study
group

Model AUC 95% CI P value*

Ohio
CF 0.585 0.565 to 0.605 Reference
CF+10SNPs_PRS 0.692 0.673 to 0.710 3.10E-21
CF+10SNPs_PRS+592KSNPs_PRS 0.693 0.675 to 0.712 0.34

Iceland
CF 0.697 0.680 to 0.714 Reference
CF+10SNPs_PRS 0.751 0.736 to 0.768 3.00E-14
CF+10SNPs_PRS+592KSNPs_PRS 0.752 0.680 to 0.714 0.3

UKB
CF 0.629 0.606 to 0.651 Reference
CF+10SNPs_PRS 0.694 0.673 to 0.716 1.00E-09
CF+10SNPs_PRS+592KSNPs_PRS 0.697 0.676 to 0.719 0.27

*P values for the stepwise addition of factors shown in the Model column.

Fig. 2. OR estimates for 10-SNP PRS deciles of thyroid cancer status obtained
from the meta-analysis results from the Ohio, Iceland, and the UKB study
groups, using the bottom 10-SNP PRS decile (0 to 10%) as the reference
group (shown as a horizontal solid line).
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in all three study populations. Our observations further support
the notion that the 10 variants previously detected by GWAS are
important genetic factors conferring thyroid cancer risk (16).
The majority of the variants (9 out of 10) are located either
intronic or intergenic, while only one SNP rs6793295 is a mis-
sense variant in the LRRC34 gene in 3q26.2 (16). This coding
variant is also significantly associated with the risk of multiple
myeloma, monoclonal gammopathy, and interstitial lung dis-
ease (25, 26). Interestingly, five noncoding variants—rs11693806,
rs2466076, rs1588635, rs368187, and rs116909374—are also asso-
ciated with serum levels of thyroid function-related hormones
(thyroid-stimulating hormone, T3, and T4), and rs116909374 is
associated with hypothyroidism (12, 13, 16, 27). The intergenic
noncoding variant rs7902587 in 10q24.33 is significantly associated
with lung cancer and ovarian cancer, and rs11693806 in 2q35 is
associated with breast cancer (28–30).
Our data suggest that the current PRS models with either 10-

SNP or 592K-SNP PRSs could still have the problem of missing
heritability (31, 32). Most likely, only a few other common var-
iants may remain to be discovered, as the 592K-SNP PRS was
designed to assess and estimate the contribution of such variants
(16). Therefore, we hypothesize that hitherto undetected low-
frequency or rare DNA variants—particularly those located in
regions of low linkage disequilibrium—may play a role in PTC
risk prediction (33). Indeed, we and others have demonstrated a
high degree of genetic heterogeneity in thyroid cancer (34–36).
We have identified multiple rare or very-low-frequency DNA
variants that may contribute to the predisposition of familial and
sporadic PTC (35–38). Identification of additional low-frequency
and/or rare germline DNA variants may benefit the assessment
of additive genetic effects in PRS models and personalized
medical diagnosis and treatment (32). We note with great in-
terest that the recent studies by Vogelstein et al. (39, 40) reached
the same conclusion, that the great majority of the driver mu-
tations in PTCs are somatic events occurring randomly in stem
cells of the target organ. These findings appear to predict that
only few or very few additional high-penetrance germline vari-
ants will be found in the future. Nevertheless, the data presented
here further support the idea that individual PTC-associated
variants confer only a small or modest disease risk, but the
combined effects of the known associated SNPs can be sub-
stantial in predicting cancer risk (4, 16, 20). Our data provide
evidence that PRS could be used for profiling individuals in the
highest and lowest relative risk groups for thyroid cancer, which
has potential for the development of population-based risk
screening and stratification programs, as has been demonstrated
in other cancers (7, 41–44).
The strength of our present study is the availability of large

numbers of case-control samples from three study groups rep-
resenting different areas of Caucasians (Ohio, Iceland, and the
United Kingdom). We used effect sizes obtained from meta-
analyses of the Iceland/UKB study groups, Ohio/UKB study
groups, and Ohio/Iceland study groups to estimate PRSs in the
excluded population: Ohio, Iceland, and the United Kingdom,
respectively. The PRSs constructed in this study omit any con-
founding effect from the study populations being used to eval-
uate the correlation between PRS and disease status. Overall,
the data presented here provide further evidence that PRS ex-
hibits strong association with thyroid cancer. Fritsche et al. (7)
reported associations of PRS in multiple cancers, including
thyroid cancer, using a PRS with 8 SNPs. Interestingly, they
found an attenuated association between increasing thyroid
cancer PRS and reduced risk for hypothyroidism (7).
In our study, thyroid cancer patients belonging to the top

decile of the 10-SNP PRS have a close to sevenfold greater risk
relative to the bottom decile, based on meta-analysis results in-
cluding data from Ohio, Iceland, and the United Kingdom. We
conclude that hereditary germline variants should be taken into

account alongside the traditional high-penetrance variants/
somatic mutations that have already become the standard of care
in the clinical handling of PTC (45–47). Identifying individuals
with high genetic risk may prove useful to optimize screening for
thyroid cancer.

Materials and Methods
Study Populations. The thyroid cancer meta-analysis has been de-
scribed previously (16). In short, the meta-analysis included a total of
3,001 nonmedullary thyroid cancer patients and 287,550 controls from
Iceland, Ohio, Texas, The Netherlands, and Spain (SI Appendix, Table S1).
In the present study, we added thyroid cancer GWAS data from the
UKB (accessed under application no. 24711) comprising samples from
534 patients with International Classification of Diseases for Oncol-
ogy code C73 (PTC, FTC, cancer/carcinoma, and rare nonmedullary)
and 407,945 controls not known to have thyroid cancer (SI Appendix,
Table S1) (22).

Genotyping. The genotyping and imputation for the study groups from
Iceland, Ohio, Texas, The Netherlands, and Spain has been described previously
(16). Genotyping of the UKB samples was performed using a custom-made
Affymetrix chip, UK BiLEVE Axiom (48), and with the Affymetrix UKB Ax-
iom array (49). Imputation was performed by the Wellcome Trust Centre for
Human Genetics using the Haplotype Reference Consortium (HRC) and the
UK10K haplotype resources (49). This yielded a total of 96 million imputed
variants; however, only 40 million variants imputed using the HRC reference
set were used in this study, owing to quality issues with the remaining
variants.

Variants in the UKB imputation dataset were mapped to National Center
for Biotechnology Information Build38 positions and matched to the variants
in the Icelandic dataset based on allele variation. The results from all study
groups were combined using a fixed-effects model in which the study groups
were allowed to have different population frequencies for alleles and
genotypes but were assumed to have a common odds ratio (OR) and
weighted with the inverse of the variance. Heterogeneity (Phet) was tested
by comparing the null hypothesis of the effect being the same in all
populations with the alternative hypothesis of each population having a
different effect using a likelihood ratio test. I2 lies between 0 and 100%
and describes the proportion of total variation in study estimates that is
due to heterogeneity.

Polygenic Risk Score. To evaluate the additive genetic effect of variants, we
created PRSs as the sums of effects of each allele representing selected sets of
variants as described by Vilhjalmsson et al. (24). For the PRS analysis, we
regenerated three meta-analysis datasets, each time excluding data from
the study group in which we intended to assess the correlation between
the PRSs and affection status; for example, when generating PRSs for
Icelanders, we used effect estimates from a meta-analysis after excluding
the Iceland data.

PRSs were generated using two different sets of variants: the 10 published
GWAS thyroid cancer risk variants and 592,475 common variants based on the
previously published meta-analysis (16), including the addition of the UKB
data described above. All PRS scores were standardized to have a unit SD.
The OR per unit SD increase is reported.

Statistical Analysis. Logistic regression analysis was used to assess the as-
sociation of PRSs with thyroid cancer status, adjusting for year of birth,
gender, ancestry with 10 principal components, and familiality based on
self-reported first- or second-degree relative information. Familiality in-
formation was not available for the UKB samples. The strength of pre-
diction models to predict thyroid cancer against controls was assessed by
comparing the AUC of the respective ROC curves that plots the true-
positive rate against the false-positive rate. ROC curves were compared
by applying DeLong’s test (50). A higher AUC indicates better model
performance. We examined all pairwise correlations and calculated VIFs
associated with the PRS models (51). PRS percentile groups were used to
create categorical predictors, and the risk of thyroid cancer between
percentile groups was assessed by applying logistic regression. ORs per 1
SD increase to estimate the associations and AUCs to assess the discrimi-
natory accuracy are presented with 95% CIs. Familial relative risk assess-
ment is estimated with 10-SNPs, assuming an overall familial relative risk
of 8.48 for thyroid cancer (16, 52, 53).
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Data Availability. The data supporting the findings of this study are available
in the paper, SI Appendix, and at https://www.decode.com/summarydata. The
UKB data can be obtained on application (https://www.ukbiobank.ac.uk/).

ACKNOWLEDGMENTS. We thank Jan Lockman and Barbara Fersch for
administrative help. This work was supported by National Cancer Institute
Grants P30CA16058 and P01CA124570.

1. M. Xing, B. R. Haugen, M. Schlumberger, Progress in molecular-based management of
differentiated thyroid cancer. Lancet 381, 1058–1069 (2013).

2. P. D. Stenson et al., The Human Gene Mutation Database: Towards a comprehensive
repository of inherited mutation data for medical research, genetic diagnosis and
next-generation sequencing studies. Hum. Genet. 136, 665–677 (2017).

3. A. P. Sokolenko, E. N. Imyanitov, Molecular diagnostics in clinical oncology. Front.
Mol. Biosci. 5, 76 (2018).

4. S. Liyanarachchi et al., Cumulative risk impact of five genetic variants associated with
papillary thyroid carcinoma. Thyroid 23, 1532–1540 (2013).

5. R. Szulkin et al.; Australian Prostate Cancer BioResource; Practical Consortium, Pre-
diction of individual genetic risk to prostate cancer using a polygenic score. Prostate
75, 1467–1474 (2015).

6. P. Maas et al., Breast cancer risk from modifiable and nonmodifiable risk factors
among white women in the United States. JAMA Oncol. 2, 1295–1302 (2016).

7. L. G. Fritsche et al., Association of polygenic risk scores for multiple cancers in a
phenome-wide study: Results from the Michigan Genomics Initiative. Am. J. Hum.
Genet. 102, 1048–1061 (2018).

8. N. Mavaddat et al.; ABCTB Investigators; kConFab/AOCS Investigators; NBCS Collaborators,
Polygenic risk scores for prediction of breast cancer and breast cancer subtypes.Am. J. Hum.
Genet. 104, 21–34 (2019).

9. D. E. Goldgar, D. F. Easton, L. A. Cannon-Albright, M. H. Skolnick, Systematic
population-based assessment of cancer risk in first-degree relatives of cancer pro-
bands. J. Natl. Cancer Inst. 86, 1600–1608 (1994).

10. C. Dong, K. Hemminki, Modification of cancer risks in offspring by sibling and pa-
rental cancers from 2,112,616 nuclear families. Int. J. Cancer 92, 144–150 (2001).

11. N. Risch, The genetic epidemiology of cancer: Interpreting family and twin studies
and their implications for molecular genetic approaches. Cancer Epidemiol. Bio-
markers Prev. 10, 733–741 (2001).

12. J. Gudmundsson et al., Common variants on 9q22.33 and 14q13.3 predispose to
thyroid cancer in European populations. Nat. Genet. 41, 460–464 (2009).

13. J. Gudmundsson et al., Discovery of common variants associated with low TSH levels
and thyroid cancer risk. Nat. Genet. 44, 319–322 (2012).

14. A. Köhler et al., Genome-wide association study on differentiated thyroid cancer. J.
Clin. Endocrinol. Metab. 98, E1674–E1681 (2013).

15. H.-Y. Son et al., Genome-wide association and expression quantitative trait loci
studies identify multiple susceptibility loci for thyroid cancer. Nat. Commun. 8, 15966
(2017).

16. J. Gudmundsson et al., A genome-wide association study yields five novel thyroid
cancer risk loci. Nat. Commun. 8, 14517 (2017).

17. G. Figlioli et al., Novel genome-wide association study-based candidate loci for dif-
ferentiated thyroid cancer risk. J. Clin. Endocrinol. Metab. 99, E2084–E2092 (2014).

18. G. Figlioli et al., A comprehensive meta-analysis of case-control association studies to
evaluate polymorphisms associated with the risk of differentiated thyroid carcinoma.
Cancer Epidemiol. Biomarkers Prev. 25, 700–713 (2016).

19. V. Mancikova et al., Thyroid cancer GWAS identifies 10q26.12 and 6q14.1 as novel
susceptibility loci and reveals genetic heterogeneity among populations. Int. J. Cancer
137, 1870–1878 (2015).

20. G. Figlioli et al., Novel genetic variants in differentiated thyroid cancer and assess-
ment of the cumulative risk. Sci. Rep. 5, 8922 (2015).

21. Y. Hwangbo et al., Genome-wide association study reveals distinct genetic suscepti-
bility of thyroid nodules from thyroid cancer. J. Clin. Endocrinol. Metab. 103, 4384–
4394 (2018).

22. C. Bycroft et al., Genome-wide genetic data on ∼500,000 UK Biobank participants.
bioRxiv:10.1101/166298 (20 July 2017).

23. C. Bycroft et al., The UK Biobank resource with deep phenotyping and genomic data.
Nature 562, 203–209 (2018).

24. B. J. Vilhjálmsson et al.; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, Discovery, Biology, and Risk of Inherited Variants in Breast Cancer
(DRIVE) study, Modeling linkage disequilibrium increases accuracy of polygenic risk
scores. Am. J. Hum. Genet. 97, 576–592 (2015).

25. B. Swaminathan et al., Variants in ELL2 influencing immunoglobulin levels associate
with multiple myeloma. Nat. Commun. 6, 7213 (2015).

26. T. E. Fingerlin et al., Genome-wide association study identifies multiple susceptibility
loci for pulmonary fibrosis. Nat. Genet. 45, 613–620 (2013).

27. G. Kichaev et al., Leveraging polygenic functional enrichment to improve GWAS
power. Am. J. Hum. Genet. 104, 65–75 (2019).

28. J. D. McKay et al.; SpiroMeta Consortium, Large-scale association analysis identifies
new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across
histological subtypes. Nat. Genet. 49, 1126–1132 (2017).

29. C. M. Phelan et al.; AOCS study group; EMBRACE Study; GEMO Study Collaborators;
HEBON Study; KConFab Investigators; OPAL study group, Identification of 12 new
susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 49,
680–691 (2017).

30. K. Michailidou et al.; NBCS Collaborators; ABCTB Investigators; ConFab/AOCS Inves-
tigators, Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–
94 (2017).

31. O. Zuk, E. Hechter, S. R. Sunyaev, E. S. Lander, The mystery of missing heritability:
Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. U.S.A. 109,
1193–1198 (2012).

32. A. I. Young, Solving the missing heritability problem. PLoS Genet. 15, e1008222
(2019).

33. P. Wainschtein et al., Recovery of trait heritability from whole genome sequence
data. bioRxiv:10.1101/588020 (25 March 2019).

34. F. Lesueur et al.; NMTC Consortium, Genetic heterogeneity in familial nonmedullary
thyroid carcinoma: Exclusion of linkage to RET, MNG1, and TCO in 56 families. J. Clin.
Endocrinol. Metab. 84, 2157–2162 (1999).

35. H. He et al., SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility.
J. Clin. Endocrinol. Metab. 98, E973–E980 (2013).

36. H. He et al., Ultra-rare mutation in long-range enhancer predisposes to thyroid car-
cinoma with high penetrance. PLoS One 8, e61920 (2013).

37. J. Tomsic et al., A germline mutation in SRRM2, a splicing factor gene, is implicated in
papillary thyroid carcinoma predisposition. Sci. Rep. 5, 10566 (2015).

38. Y. Wang et al., Identification of rare variants predisposing to thyroid cancer. Thyroid
29, 946–955 (2019).

39. C. Tomasetti, B. Vogelstein, Cancer etiology. Variation in cancer risk among tissues
can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

40. C. Tomasetti, L. Li, B. Vogelstein, Stem cell divisions, somatic mutations, cancer eti-
ology, and cancer prevention. Science 355, 1330–1334 (2017).

41. N. Mavaddat et al., Prediction of breast cancer risk based on profiling with common
genetic variants. J. Natl. Cancer Inst. 107, djv036 (2015).

42. M. Frampton, R. S. Houlston, Modeling the prevention of colorectal cancer from the
combined impact of host and behavioral risk factors. Genet. Med. 19, 314–321 (2017).

43. P. Radice, P. D. P. Pharoah, P. Peterlongo, Personalized testing based on polygenic risk
score is promising for more efficient population-based screening programs for com-
mon oncological diseases. Ann. Oncol. 27, 369–370 (2016).

44. X. Yang et al., Evaluation of polygenic risk scores for ovarian cancer risk prediction in
a prospective cohort study. J. Med. Genet. 55, 546–554 (2018).

45. Y. E. Nikiforov, Role of molecular markers in thyroid nodule management: Then and
now. Endocr. Pract. 23, 979–988 (2017).

46. M. N. Nikiforova et al., Analytical performance of the ThyroSeq v3 genomic classifier
for cancer diagnosis in thyroid nodules. Cancer 124, 1682–1690 (2018).

47. M. Endo et al., Afirma gene sequencing classifier compared with gene expression
classifier in indeterminate thyroid nodules. Thyroid 29, 1115–1124 (2019).

48. L. V. Wain et al.; UK Brain Expression Consortium (UKBEC); OxGSK Consortium, Novel
insights into the genetics of smoking behaviour, lung function, and chronic ob-
structive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank.
Lancet Respir. Med. 3, 769–781 (2015).

49. S. Welsh, T. Peakman, S. Sheard, R. Almond, Comparison of DNA quantification
methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC
Genomics 18, 26 (2017).

50. E. R. DeLong, D. M. DeLong, D. L. Clarke-Pearson, Comparing the areas under two or
more correlated receiver operating characteristic curves: A nonparametric approach.
Biometrics 44, 837–845 (1988).

51. J. Fox, G. Monette, Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–
183 (1992).

52. R. S. Houlston, D. Ford, Genetics of coeliac disease. QJM 89, 737–743 (1996).
53. P. Broderick et al., Common variation at 3p22.1 and 7p15.3 influences multiple my-

eloma risk. Nat. Genet. 44, 58–61 (2011).

6002 | www.pnas.org/cgi/doi/10.1073/pnas.1919976117 Liyanarachchi et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
27

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919976117/-/DCSupplemental
https://www.decode.com/summarydata
https://www.ukbiobank.ac.uk/
https://www.pnas.org/cgi/doi/10.1073/pnas.1919976117

